
Program Smart Contracts
into Ethereum

using Blockchain

MAY
JUN
2018

co
de

m
ag

.c
om

 -
TH

E
LE

A
D

IN
G

 IN
D

EP
EN

D
EN

T
D

EV
EL

O
PE

R
M

AG
A

ZI
N

E
- U

S
 $

 5
.9

5
 C

an
 $

 8
.9

5
Alexa Skills, Angular Security, Docker, SQL Server Reporting Services

Building Custom Alexa Skills

Building Containers with Docker

Introducing Progressive Web Applications

codemag.com32 Understanding Blockchain: A Beginner’s Guide to Ethereum Smart Contract Programming

ONLINE QUICK ID 1805061

Understanding Blockchain:
A Beginner’s Guide to Ethereum
Smart Contract Programming
One of the hottest technologies of late is blockchain. A blockchain is a digital transaction of records that’s arranged in
chunks of data called blocks. These blocks link with one another through a cryptographic validation known as a hashing
function. Linked together, these blocks form an unbroken chain—a blockchain. A blockchain is programmed to record

not only financial transactions but virtually everything of
value. Another name for blockchain is distributed ledger.

In this article, I explain the basic ideas behind a block-
chain and how it works. Once the fundamentals of block-
chain are out of the way, I dive into one of the key fea-
tures behind the Ethereum blockchain: smart contracts.
Smart contracts allow developers to deploy decentralized
applications that take advantage of the various charac-
teristics of blockchain. Hold on tight, as I’m going to
discuss a lot of concepts in this article. But if you follow
along closely, you’ll understand the concepts of block-
chain and be on your way to creating some really creative
applications using it!

Centralization vs. Decentralization
In the traditional client-server architecture, you store
transactions records in a database in a centralized lo-
cation. Figure 1 shows the interactions between clients
and servers.

Storing your data in a central location has the following
risks:

• The potential for data loss
• The potential for illegal data alteration

The first point is easy to mitigate and can be solved by
replicating the data in multiple locations (backups). The
second point is more challenging. How do you ensure the
integrity of the data stored on the server? A good ex-
ample is banks. How can you be sure that the balance in
your bank account reflects the correct amount of money
you possess? In most countries, people trust their banks
and governments to maintain the correct records of
their personal possessions. But in some countries, gov-
ernments are corrupt and people have very little trust
in them. As you can see, a centralized approach to data
storage isn’t always ideal.

Thus, blockchain was born, focusing on the decentraliza-
tion of data storage, commonly known as a distributed
ledger. Using decentralization, Figure 1 now looks like
Figure 2.

Storing the transactions on multiple computers ensures
that no single computer can singlehandedly alter the
data on its own, because the transactions are replicated

on multiple computers. If a malicious actor wishes to alter
the transactions, he must modify the transaction not only
on a single computer, but also on all the computers hold-
ing the transactions. The more computers participating in
the network, the more computers he needs to modify. In
this case, decentralization shifts the trust from a central
authority to one that is trustless: You don’t need to trust a
central authority because now everyone holds the records.

The Blocks in Blockchain
In Figure 1 and Figure 2, you saw that the database con-
tains transactions. Typical transactions may look like this:

• A sends 5 BTC (bitcoins) to B
• B sends 2 BTC to C
• A sends 1 BTC to D

It’s important to note that blockchains are used not only
for cryptocurrencies like bitcoins and ethers, but can be
used for anything of value. Transactions are then grouped
into blocks (see Figure 3).

Transactions are grouped into blocks so that they can
be efficiently verified and then synchronized with other
computers on the network. Once a block is verified, they
are added to the previous block, as shown in Figure 4.

Blockchain gets its name from the fact that blocks of
data are chained to each other cryptographically. In
order to ensure the correct order of transactions in the
blockchain, each block contains the hash (a hash is the
result of mapping a block of data into data of fixed size
using a cryptographic function) of the previous block, as
shown in Figure 5.

Storing the hash of the previous block in the current
block assures the integrity of the transactions in the
previous block. Any modifications to the transaction(s)
within a block causes the hash in the next block to be
invalidated, and it also affects the subsequent blocks in
the blockchain. If a hacker wants to modify a transaction,
not only must he modify the transaction in a block, but
all other subsequent blocks in the blockchain. In addi-
tion, he needs to synchronize the changes to all other
computers on the network, which is a computationally
expensive task to do. Data stored in the blockchain is im-
mutable, for it’s hard to change once the block they are
in is added to the blockchain.

Wei-Meng Lee
weimenglee@learn2develop.net
www.learn2develop.net
@weimenglee

Wei-Meng Lee is a technologist
and founder of Developer
Learning Solutions
(http://www.learn2develop.net),
a technology company special-
izing in hands-on training
on the latest technologies.
Wei-Meng has many years of
training experiences and his
training courses place special
emphasis on the learning-
by-doing approach. His hands-
on approach to learning
programming makes under-
standing the subject much
easier than reading books,
tutorials, and documentation.
His name regularly appears in
online and print publications
such as DevX.com, MobiForge.com,
and CODE Magazine.

codemag.com 33Understanding Blockchain: A Beginner’s Guide to Ethereum Smart Contract Programming

block. So instead of deriving a hash from the transac-
tions and the hash of the previous block, they now add
the nonce to the hashing operation. The miners need to
compete with each other to guess the value of the nonce
that gives a resultant hash matching the difficulty target.
And that’s basically all that miners do! Their job is to find
the value of this nonce.

The updated blockchain now looks like Figure 8.

The process of finding the nonce is called Proof-of-Work
(PoW). Once the nonce is found, the entire block and the
nonce is broadcasted to other nodes, informing them that
the block has been mined and is ready to be added to the
blockchain. The other blocks can now verify that the nonce
does indeed satisfy the difficulty target and stop their cur-

The first block in a blockchain is known as the genesis
block. Every blockchain has its own genesis block; the
bitcoin network has its own genesis block, and Ethereum
has its own genesis block.

Nodes in a Blockchain Network
I have earlier mentioned that in a decentralized network,
there are many computers holding onto the transactions.
I can now replace the transactions with the blockchain,
as shown in Figure 6.

Computers storing the entire blockchain are known as
full nodes. They help to verify and relay transactions
and blocks to other nodes. They also make the network
robust, as there are now multiple nodes in the network
with little risk of a single point of failure. Besides full
nodes, there are also nodes known as light nodes, which
I’ll discuss later in this article.

Miners
Among all the full nodes in a blockchain network, some
are known as mining nodes (also known as miners).
Miners add blocks to the blockchain. In order to add a
block to the blockchain, a miner needs to do the fol-
lowing:

• Take the transactions in the previous block and
combine it with the hash of the previous block to
derive its hash.

• Store the derived hash into the current block

Figure 7 outlines the process:

The process of performing hashing is straightforward
and a computer can perform that in a matter of milli-
seconds. So how do you ensure that all the miners have
equal chances to mine a block? It turns out that to solve
this problem, the blockchain network (such as Bitcoin or
Ethereum) inserts a network difficulty target into every
block, so that in order to mine a block, the result of the
hash must meet the criteria set by the difficulty target.
For example, a difficulty target may dictate that the re-
sultant hash starts with five zeros; if not the block can’t
be accepted. As more miners join the network, the net-
work automatically adjusts the difficulty target so that
blocks can be mined at a constant rate.

In order to meet the difficulty target, miners need to in-
ject a number called nonce (number used once) into the

Figure 1: Centralized data storage

Figure 2: Decentralized data storage

Figure 3: Transactions are
grouped into blocks

When a miner has successfully
mined a block, he earns
mining fees as well as
transaction fees. That’s
what keeps miners motivated
to invest in mining rigs and
keep them running 24/7,
thereby incurring substantial
electricity bills.

codemag.com

What is Ethereum?

Ethereum is an open-source
public blockchain that is similar
to the Bitcoin network.
Besides offering a cryptocurrency
known as Ether (which is similar
to bitcoin), the main difference
between Bitcoin and Ethereum
is that the latter offers a
programming platform on
top of the blockchain,
called Smart Contract.

rent mining process and move on to mine the next block.
The key principle behind PoW is that it’s difficult to find
the nonce but easy for others to verify once you’ve found
it. A good analogy is a digital lock; it’s difficult to find the
correct key combination to unlock it but very easy to verify
it once you’ve found the correct key combination.

Immutability of Blockchains
In a blockchain, each block is chained to its previous
block through the use of a cryptographic hash. A block’s
identity changes if the parent’s identity changes. This,
in turn, causes the current block’s children to change,
which affects the grandchildren, and so on. A change to
a block forces a recalculation of all subsequent blocks,
which requires enormous computation power. This makes
the blockchain immutable, a key feature of cryptocurren-
cies like Bitcoin and Ethereum.

As a new block is added to the blockchain, the block of
transactions is said to be confirmed by the blockchain.
When a block is newly added, it’s deemed to have one
confirmation. As another block is added to it, its number
of confirmations increases. Figure 9 shows the number
of confirmations that the blocks in a blockchain has. The
more confirmations a block has, the more difficult it is to
remove it from the blockchain.

Figure 4: Linking blocks to form a blockchain Figure 5: Using hashing to chain the blocks in a blockchain

Figure 6: Full nodes in the blockchain network containing the blockchain

In general, once a block has
six or more confirmations,
it’s deemed infeasible for
it to be reversed. Therefore,
the data stored in the
blockchain is immutable.

34 Understanding Blockchain: A Beginner’s Guide to Ethereum Smart Contract Programming

codemag.com

• A block header that includes the nonce, hash of the
previous blocks, as well as the Merkle Root of the
transactions (discussed in the next section)

• The list of transactions

Merkle Tree and Merkle Root
The list of transactions is stored as a Merkle tree. A Merk-
le tree is a tree data structure in which every leaf node is
the hash of a transaction and every non-leaf node is the
cryptographic hash of the child nodes. Figure 11 shows
how the Merkle Root is derived from the transactions.

As you can see from the figure, each transaction is
hashed. The hash of each transaction is hashed together
with the hash of another node. For example, the hash of
transaction A (H

A) is combined with the hash of trans-
action B (H

B) and hashed to derive HAB. This process is
repeated until there’s only one resultant hash. This final
hash is known as the Merkle Root. In the above example,
because H

E doesn’t have another node to pair with, it’s
hashed with itself. The same applies to H

EE.

The Merkle Root is stored in the Block Header and the
rest of the transactions are stored in the block as a Merk-
le tree. In the earlier discussion, I mentioned about full
nodes. Full nodes download the entire blockchain, and
there’s another type of node (known as light nodes) that
downloads only the blockchain headers. Because light
nodes don’t download the entire blockchain, they’re eas-
ier to maintain and run. Using a method called Simpli-
fied Payment Verifications (SPV), a light node can query
a full node to verify a transaction. Examples of light
nodes are cryptographic wallets.

Uses of Merkle Trees and the Merkle Root
By storing the Merkle Root in the Block Header and the
transactions as a Merkle Tree in the block, a light node
can easily verify if a transaction belongs to a particular
block. This is how it works. Suppose a light node wants
to verify that transaction C exists in a particular block:

• The light node queries a full node for the following
hashes: H

D, HAB, and HEEEE (see Figure 12).
• Because the light node can compute H

C, it can then
compute H

CD with HD supplied.
• With H

AB supplied, it can now compute HABCD.
• With H

EEEE supplied, it can now compute HABCDEEEE

(which is the Merkle Root).
• Because the light node has the Merkle Root of the

block, it can now check to see if the two Merkle
Roots matches. If they match, the transaction is
verified.

As you can see from this simple example, to verify a single
transaction out of five transactions, only three hashes
need to be retrieved from the full node. Mathematically,
for n transactions in a block, it takes log

2n hashes to
verify that a transaction is in a block. For example, if
there are 1024 transactions in a block, a light node only
needs to request 10 hashes to verify the existence of a
transaction in the block.

Smart Contracts
Although the initial use of blockchain was for cryptocur-
rency such as Bitcoin, blockchain offers much more than

Blockchain in More Detail
I mentioned that a block contains a list of transactions,
the hash of the previous block, and the nonce. That was
an over-simplification. In actual fact, a block also con-
tains (see also Figure 10):

Figure 7: Storing the hash of the current block in the next block

Figure 8: Miners work hard to find the value of the nonce.

36 Understanding Blockchain: A Beginner’s Guide to Ethereum Smart Contract Programming

codemag.com

songs are protected and that no one else can plagiarize
them (especially before they are released). Because data
stored on the blockchain is immutable and time-stamped,
it’s a good platform to store the lyrics of your songs as the
proof that you’re the original creator of the song. How-
ever, blockchain data are inherently public, so storing the
lyrics of your creation on the blockchain isn’t practical.
A good workaround for this case is to store the hash of
the song’s lyrics. That way, you maintain confidentiality
of your creation, and at the same time you can prove that
the lyrics are written by you if you are able to provide the
original lyrics to generate the original hash.

Based on this scenario, let’s now create a smart contract
that solves the problem. In Ethereum, smart contracts
are written using the Solidity language, a language in-
spired by the JavaScript programming language.

The smart contract is shown in Listing 1. Let’s examine
the contract in more detail. The first statement specifies
the pragma directive:

pragma solidity ^0.4.17;

just a record of transactions. In addition to trading cryp-
tocurrencies, some implementations of blockchains offer
the idea of smart contracts. In particular, the Ethereum
is one such example. Like Bitcoin, Ethereum offers a
cryptocurrency known as Ether, but it also turned all the
nodes in the network into “Turing complete” computers.
What this means is that you can write programs (known
as smart contracts) and execute them on all the nodes
on the network.

Ethereum implements an execution environment on the
blockchain called the Ethereum Virtual Machine (EVM).
Every node participating in the network runs the EVM as
part of the block verification protocol. They go through
the transactions listed in the block they’re verifying and
run the code as triggered by the transaction within the
EVM. Each and every full node in the network does the
same calculations and stores the same values.

To understand how a smart contract is useful, let’s imagine
the following scenario. You’re a musician and you want to
protect your intellectual property, in this case, your music
creations. You want to make sure that the lyrics of your

Figure 9: Confirmations of blocks in a blockchain

Figure 11: How the Merkle Root is derived from the Merkle Tree

Figure 10: A block contains the
block header, which in turns
contains the Merkle Root of the
transactions

37Understanding Blockchain: A Beginner’s Guide to Ethereum Smart Contract Programming

codemag.com

(commonly known as a dictionary). In this example, it con-
tains key/value pairs, of which the key is of type bytes32
(32 bytes of raw data) and its associated value of type
bool (Boolean). For this example, you’ll hash the lyrics of
a song using SHA256 (which returns a 32-byte hash) and
then store the hash in proofs. State variables values are
permanently stored in contract storage.

Next, define a function called storeProof(), which takes in a
single argument of type bytes32. It’s declared with the pri-
vate visibility modifier to indicate that it will be used inter-
nally within the contract and not visible outside this contract.

 //---stores the hash of the lyrics in the
 // mapping---
 function storeProof(bytes32 proof) private {
 proofs[proof] = true;
 }

The above means that the contract compiles with a com-
piler version beginning with 0.4.17; but it won’t work
with version 0.5.0 or higher.

Next, to define a contract, you use the contract keyword:

contract SongsCopyright {
}

This is very much like declaring a class in languages like
C# or JavaScript. Next, you declare a state variable
named proofs:

mapping (bytes32 => bool) private proofs;

Think of state variables like class members in a typical pro-
gramming language. In this example, the state variable is
of type mapping, which is really like an associative array

Figure 12: How the Merkle Tree and Merkle Root is used to validate a transaction

pragma solidity ^0.4.17;

contract SongsCopyright {
 //---mapping is an associative array, similar
 // to key/value pairs
 // key is bytes32 and value is boolean---
 mapping (bytes32 => bool) private proofs;

 //---stores the hash of the lyrics in the
 // mapping---
 function storeProof(bytes32 proof) private {
 proofs[proof] = true;
 }

 //---calculate and store the hash (proof) for
 // a song's lyrics---
 function copyrightLyrics(string lyrics) public {
 bytes32 proof = lyricsHash(lyrics);
 storeProof(proof);
 }

 //---helper function to get a lyrics's sha256---
 function lyricsHash(string lyrics) private
 pure returns (bytes32) {
 return sha256(lyrics);
 }

 //---check if a lyrics has previously been
 // saved---
 function checkLyrics(string lyrics) public
 view returns (bool) {
 bytes32 proof = lyricsHash(lyrics);
 return hasProof(proof);
 }

 //---returns true if proof is found---
 function hasProof(bytes32 proof) private view
 returns(bool) {
 return proofs[proof];
 }
}

Listing 1: A Smart Contract to copyright a song’s lyrics

40 Understanding Blockchain: A Beginner’s Guide to Ethereum Smart Contract Programming

codemag.com

What is MetaMask?

MetaMask is a bridge that allows
you to connect to the Ethereum
network. It allows you to run a
blockchain app in your browser
without running a full Ethereum
node. MetaMask includes a
secure identity vault, providing
a user interface to manage your
identities on different sites and
sign blockchain transactions.

 //---helper function to get a lyrics's
 // sha256---
 function lyricsHash(string lyrics) private
 pure returns (bytes32) {
 return sha256(lyrics);
 }

The next function is checkLyrics(), which is declared
with the view keyword. The view keyword indicates
that this function accesses the value of state variables,
but it never modifies them. This function takes in a
song’s lyrics and hashes it. It then calls the hasProof()
function to see if the hash exists in the proofs
mapping.

 //---check if a lyrics has previously been
 // saved---
 function checkLyrics(string lyrics) public
 view returns (bool) {
 bytes32 proof = lyricsHash(lyrics);
 return hasProof(proof);
 }

 //---returns true if proof is found---
 function hasProof(bytes32 proof) private view
 returns(bool) {
 return proofs[proof];
 }

Compiling the Smart Contract
To compile a Smart Contract, you can use the solc com-
piler. The easiest is the online Solidity compiler (Remix
IDE) available at https://remix.ethereum.org. When you
first load the Remix IDE, you’ll see a default contract
called ballot.sol. Simply overwrite it with the Songs-
Copyright contract, as shown in Figure 13.

The next function is called copyrightLyrics() and it calls
the lyricsHash() function to hash the given song’s lyrics.
Once the hash is derived, it calls the storeProof() func-
tion to store the hash in the proofs mapping. Note that
this function is declared with the public keyword to in-
dicate that this function is callable outside the contract.

//---calculate and store the hash (proof) for
 // a song's lyrics---
 function copyrightLyrics(string lyrics)
 public {
 bytes32 proof = lyricsHash(lyrics);
 storeProof(proof);
 }

The lyricsHash() function performs a hash on the
song’s lyrics using the sha256() function. Note that it’s
declared with the pure keyword. The pure keyword in-
dicates that this function won’t access nor change the
value of state variables.

Because State variables store
values permanently on the
blockchain, it’s expensive
to use and consumes gas
whenever you need to change
their values. This is because
of the way the state variables
store their values in the
blockchain. (An explanation
of this is beyond the scope
of this article.)

Figure 13: Use the Remix IDE to compile a smart contract.

41Understanding Blockchain: A Beginner’s Guide to Ethereum Smart Contract Programming

codemag.com

• The ABI (Application Binary Interface) of the con-
tract

• The address of the deployed contract

For the first one, you can find the ABI of your contract by
clicking on the icon displayed next to the ABI section, as
shown in Figure 14. This copies the ABI of the contract
into the clipboard. Paste the ABI into a text editor be-
cause you’ll need it later in this article when you build a
client application to interact with the contract.

For the address of the contract, you’ll get it once it has
been mined and added to the blockchain. You’ll see this
later in this article.

Testing the Contract Using the JavaScript VM
Once the smart contract is compiled without any errors,
it’s time to test it. The Remix IDE offers three modes of
testing your smart contract:

• JavaScript VM simulates running your smart con-
tract without actually deploying it onto the block-
chain.

• Injected Web3 uses a plug-in such as MetaMask
in your Web browser to inject a web3 object (see
the next section for more information) so that your
smart contract can be associated with an account.

• Web3 Provider connects directly to an Ethereum

On the right side of the window, you’ll see a tab named
Compile. Be sure to check the Auto compile option. This
allows your contract to be compiled as you type and you
can fix any errors on the fly. Quite often, there may be
warning messages, but most of the time the warnings are
more informational than critical. On the same tab, you’ll
find the Details button. If you click the Details button,
you’ll see a pop-up, as shown in Figure 14.

For a contract to be callable by client applications, a cli-
ent application needs the following two pieces of infor-
mation:

Figure 14: Getting the details of the compiled smart contract

Figure 15: The Remix IDE supports three different modes of testing your smart contract.

42 Understanding Blockchain: A Beginner’s Guide to Ethereum Smart Contract Programming

codemag.com

What is Gas?

When a contract is deployed
or is executed as a result of
being triggered by a message
or transaction, every instruction
is executed on every node of
the blockchain network. This
has a cost; for every executed
operation, there’s a specified cost,
expressed in a number of
gas units. Gas is the name for
the execution fee that senders
of transactions need to pay for
every operation made on an
Ethereum blockchain.

functions that do not consume gas when called, and
those in red require gas. Because the contract is simulat-
ed in this example, you won’t see the difference between
the two buttons, for now.

Let’s now try to copyright the lyrics of a song and type in
the following lyrics (together with the quotation marks)
into the box displayed next to the copyrightLyrics but-
ton (see Figure 17):

“We tried to get along, we tried to just get through but
something here is wrong, don’t tell me this is true. There’s
no reason why, I never saw the sign, you didn’t say good-
bye. I hoped you were mine, waited up all night long,
waited up all night long, waited up all night long, waited
up all night long, the night went on and on. The sun was
rising slow somewhere in the dawn, the saddest feelings
grow, the power of that pretty face, my heart could end for
you causing such an empty space. Don’t tell me this is true,
waited up all night long, waited up all night long, waited
up all night long, waited up all night long.”

Click the copyrightLyrics button and the lyrics are now
passed to the contract and the hash saved.

To verify whether the same lyrics have previously been
saved into the contract, type in the same lyrics and click
the checkLyrics button (see Figure 18). You should see
the result as true.

If you now enter some other song’s lyrics, you will get a
false for the result.

Testing the Contract Using the Injected Web3
Now that your contract is tested to run without prob-
lems, let’s deploy it onto a real blockchain. To do so, you
need a way to get connected to the Ethereum blockchain.
You do this via an Ethereum node. The easiest way to get
connected to the Ethereum network is to use MetaMask
(https://metamask.io).

Behind the scenes, MetaMask connects to some Ethe-
reum nodes hosted at infura.io. Your accounts are saved
in MetaMask itself, but all your transactions are relayed

node so that your smart contract can be associated
with an account. Requires you to run an Ethereum
node such as geth.

For this section, let’s select the JavaScript VM (see Fig-
ure 15) located under the Run tab.

You can now click the Create button to simulate deploy-
ing the contract onto the blockchain. Immediately, you
see the contract with two buttons (see Figure 16). Ob-
serve that the checkLyrics button is blue and the copy-
rightLyrics button is red. Blue-colored buttons represent

Figure 16: Test the smart contract using the JavaScript VM.

Gas is the internal pricing
for running a transaction
or contract in Ethereum.

Figure 17: Send a song’s lyrics to be stored on the blockchain.

43Understanding Blockchain: A Beginner’s Guide to Ethereum Smart Contract Programming

codemag.com

through the Ethereum nodes at infura.io. Figure 19
shows how MetaMask connects to the Ethereum network.

MetaMask exists as a Chrome extension. Just launch the
Chrome Web browser and navigate to https://metamask.io.
Once the installation is done, you can see the MetaMask ex-
tension installed on your Chrome browser (see Figure 20).

Enter a password to secure your account. Once the pass-
word is entered, you will see a 12-word phrase. These 12
words allow you to restore your account(s) in the event
that you have forgotten your password, or that you need
to restore the accounts on another computer. Once this
is done, you should see a default account created for you
(see Figure 21). Observe your account address (in this
example it’s the one that says “0xc5274…”).

You can also click on the drop-down item labeled Main
Network (see Figure 22) to see the different Ethereum
networks you can connect to. By default, MetaMask con-
nects to the Main Ethereum Network. For development
use, you should connect to one of the test networks
available. Doing so spares you the need to use real Ethers
for testing your smart contract. For this example, let’s
connect to the Ropsten Test Network.

In order to test smart contracts on the test networks, you
need Ethers. At this moment, you have none, so you need to
get some. Click on the BUY button and then another screen
will appear. Click the ROPSTEN TEST FAUCET button and
you will be redirected to the https://faucet.metamask.io/
page (see Figure 23). Click the request 1 ether from fau-
cet button a few times to request for some free Ethers.

After a while (an Ethereum block typically takes about 14
seconds to be mined), you should see some Ethers (see
Figure 24).

You are now ready to deploy the contract to the test net-
work. Back in the Remix IDE, select the Injected Web3
environment. Make sure that the Account now displays
the account you observed in MetaMask (see Figure 25). If
you don’t see the account, refreshing the page will usu-
ally fix the problem.

Figure 18: Verify a song’s lyrics against the hash stored on the blockchain.

Figure 19: How MetaMask works

Figure 20: Enter a password so that MetaMask can
secure your accounts

The Ethers that you obtained
from the test faucet have no real
monetary value, so don’t be too
excited if you see a monetary
value assigned in MetaMask.

44 Understanding Blockchain: A Beginner’s Guide to Ethereum Smart Contract Programming

codemag.com

Click the Create button to deploy the contract. This time
around, notice that MetaMask pops up a window asking
you to confirm the transaction (see Figure 26), with the
Gas information specified.

Gas and Ether are decoupled deliberately; units of gas are
aligned with computation units, and the price of Ether
fluctuates as a result of market forces. The price of gas
is decided by the miners, who can refuse to process a
transaction with a lower gas price than their minimum
limit. To get gas, you simply need to have Ether in your
account. Ethereum clients automatically use your Ether
to purchase Gas. Ether is deducted from the Ethereum ac-
count sending the transaction. The amount of gas need-
ed for a transaction is determined by the complexity of

Figure 21: Your first account in MetaMask
Figure 22: MetaMask can connect to the different
Ethereum networks.

Figure 23: Request free Ethers to use on the test networks.

Figure 24: The account credited with some Ethers

Figure 25: Test the smart contract using the Injected
Web3 method.

45Understanding Blockchain: A Beginner’s Guide to Ethereum Smart Contract Programming

codemag.com

the contract. You specify the gas limit (min. 21,000 gas)
to indicate the maximum amount of gas you are willing
to spend on a contract. This prevents you from spending
an unlimited amount of gas on a contract that runs in-
definitely (due to a bug). All unused gas is refunded back
to you. As shown in Figure 26, a maximum of 220090 gas
is needed and a unit of gas is priced at 5 GWEI (1 Ether is
equal to 1000000000 GWEI), giving it a total of (220090
* 5)/1000000000 = 0.0011 Ether. Based on the time of
this writing, this is worth about $0.80.

Figure 26: Deploying a smart contract consumes gas.

Figure 27: The smart contract is now deployed on the
Ropsten test network.

Figure 28: Sending a song’s lyrics to the deployed smart contract requires gas.

SPONSORED SIDEBAR:
Need FREE Project Help?

Need help on a new or
existing project? Need
help migrating an existing
application from a legacy
platform like VB or FoxPro?
Need help converting a
desktop application to a
cloud or Web application?
The experts at CODE
Consulting have experience in
cloud, Web, desktop, mobile,
microservices, and DevOps
and are a great resource
for your team! Contact us
about our FREE (yes, free!)
hour-long consulting session
(not a sales call!) with our
experts to help you achieve
your project goals.
For more information, visit
www.codemag.com/consulting
or email us at info@codemag.com.

46 Understanding Blockchain: A Beginner’s Guide to Ethereum Smart Contract Programming

codemag.com

<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css"
 href="main.css">
 <script src="./node_modules/web3/dist/web3.min.js">
 </script>
 </head>
 <body>
 <div class="container">
 <h1>Song's Copyright Smart Contract</h1>
 <center>
 <label> Song Lyrics to Copyright</label>
 <input id="songlyricstocopyright" type="text">
 <button id="btnCopyright">Copyright</button>

 <label>Song Lyrics to Verify</label>
 <input id="songlyricstoverify" type="text">
 <button id="btnVerify">Verify</button> </center>
 </div>
 <script
 src="https://code.jquery.com/jquery-
 3.2.1.slim.min.js"></script>
 <script>
 if (typeof web3 !== 'undefined') {
 // when using Metamask, web3 would be injected
 web3 = new Web3(web3.currentProvider);
 } else {
 // set the provider you want from Web3.providers
 // this block will be executed if you are not
 // using Metamask
 web3 = new Web3(new
 Web3.providers.HttpProvider(
 "http://localhost:8545"));
 }

 //---the ABI of the contract---
 var contractABI = web3.eth.contract(

 [{ “constant”: true, “inputs”:
 [{ “name”: “lyrics”,
 “type”: “string” }], “name”:
 “checkLyrics”,
 “outputs”: [{ “name”: “”,
 “type”: “bool”
 }], “payable”: false, “stateMutability”:
 “view”, “type”: “function” }, {
 “constant”: false, “inputs”: [
 { “name”: “lyrics”, “type”: “string”
 }], “name”: “copyrightLyrics”,
 “outputs”: [],
 “payable”: false, “stateMutability”:
 “nonpayable”,
 “type”: “function” }]);

 //---replace the contract address with your own---
 var contract = contractABI.at(
 '0xdbe99ce4ffd917796d85e134814c5fae625c6555');

 $("#btnCopyright").click(function() {
 var songlyrics = $("#songlyricstocopyright").val();
 console.log(songlyrics);
 contract.copyrightLyrics(
 songlyrics,(err, result) => {});
 });

 $("#btnVerify").click(function() {
 var songlyrics = $("#songlyricstoverify").val();
 contract.checkLyrics(songlyrics, (err, result) => {
 $("#result").html(result);
 alert(result)
 });
 });
 </script>
 </body>
</html>

Listing 2: The content of SongsCopyright.html

Figure 29: The Web application is automatically linked to the account in MetaMask.

Click the SUBMIT button to confirm the transaction. When
the transaction is mined, you’ll see the contract deployed
together with the contract address (see Figure 27).

You can now enter the song lyrics and then click the
copyrightLyrics button. I mentioned earlier that buttons
that are red require payments. In this case, clicking on
the copyrightLyrics button brings up the confirmation
window again, as shown in Figure 28.

Click the SUBMIT button and the transaction will be add-
ed to a block and mined. After a while, you’ll be able to
enter the same lyrics in the textbox next to the check-
Lyrics button to verify the lyrics. Observe that for this
transaction, no gas is required, as the request isn’t modi-
fying the state variables in the smart contract. Once the
transaction is mined and the block containing it is added
to the blockchain, the hash of your song’s lyrics is forever
available in the blockchain and remains immutable.

Writing a Web Application to
Invoke the Smart Contract
In the previous sections, you tested the smart contract
and deployed it onto the Ropsten test network. You even
had the chance to test it in the Remix IDE. However, in
real life usage, it isn’t practical to ask your user to use
Remix IDE. A better way should exist to interact with your
smart contract, ideally through a Web application.

To interact with a smart contract from within a Web ap-
plication, you can use the web3.js APIs. The web3.js is
a collection of libraries that allow you to interact with
a local or remote Ethereum node, using a HTTP or IPC
connection.

47Understanding Blockchain: A Beginner’s Guide to Ethereum Smart Contract Programming

codemag.com

that it can use the account to pay for gas, as well as send
Ether to another user or account.

In order for web3.js to work correctly (due to security con-
cerns), your HTML pages must be served from http://, and
not file:///. If you have a Web server, you can store the Web
pages in the Web publishing directory of your computer. For
development purposes, there is a Node.js module that al-
lows you to serve a HTML page from wherever it’s saved. Type
the following command to install the serve module:

$ npm install -g serve

Let’s now create the HTML page to interact with the Smart
Contract. Create a file named SongsCopyright.html and
save it in the UseContract folder. Populate it as shown in
Listing 2. Note that to invoke a contract, a client needs
the ABI of the contract as well as its address.

Create another file named main.css and save it in the
UseContract folder. Populate it as shown in Listing 3.

To start the Web server, type the following commands in
Terminal:

$ cd ~/UseContract
$ serve

Using the Chrome browser (with the MetaMask exten-
sion installed), load the HTML page using http://local-
host:5000/SongsCopyright.html/. You can now enter the
song lyrics and then click on the Copyright button. The
MetaMask window now automatically pops up asking you
to submit or reject the transaction (see Figure 29).

Once the transaction has been confirmed and the block
mined, you can now verify the song lyrics. Clicking on the
Verify button displays the result as an alert (see Figure 30).

Summary
I hope that I‘ve provided an easy way for you to under-
stand Blockchain and see how it works. Although there are
many details that I haven’t discussed in this article due to
the constraint of space, it should help you get started with
Blockchain, in particular with Smart Contracts, and to see
how it can be used for a lot of real-world applications. We
are still in the early days of this technology, so prepare
to see many more creative uses of Blockchain and smart
contracts coming your way in the near future!

To see how it’s used, let’s now create a Web application
to interact with the Smart Contract that you’ve just de-
ployed to the Ethereum Ropsten test network.

Type the following commands in the Terminal (you need
to install Node.js in order for the npm command to work):

$ cd ~
$ mkdir UseContract
$ cd UseContract/
$ npm init
[Press Enter a few times]

The above commands create a directory named UseCon-
tract in the home directory of your account. You then use
npm to initialize a new project. Once that’s done, type
the following command:

$ npm install --save ethereum/web3.js

This downloads the web3.js module and its dependen-
cies. Remember when you used MetaMask in the earlier
section of this article? MetaMask injects the web3.js
JavaScript library to allow you to carry out transactions
via a regular Web page in Chrome. This means that when
your Web application interacts with a Smart Contract,
 it automatically links to your account in MetaMask so

Figure 30: Verifying a song’s hash on the smart contract

body {
 background-color:#F0F0F0;
 padding: 2em;
 font-family: 'Arial';
}
label {
 display:block;
 margin-bottom:10px;
}
input {

 padding:10px;
 width:100%;
 margin-bottom: 1em;
}
button {
 margin: 2em 0;
 padding: 1em 4em;
 width: 50%;
 display:block;
}

Listing 3: The content of main.css

 Wei-Meng Lee

48 Understanding Blockchain: A Beginner’s Guide to Ethereum Smart Contract Programming

